Hoved

Hypertensjon

Menneskelig hjerte muskel

Til tross for at hjertet er bare halvparten av den totale kroppsvekten, er det det viktigste organet i menneskekroppen. Det er normal funksjon av hjertemusklen som muliggjør full drift av alle organer og systemer. Den komplekse strukturen i hjertet er best tilpasset for fordelingen av arterielle og venøse blodstrømmer. Fra medisinsk synspunkt er det hjertesykdommen som opptar først og fremst blant menneskelige sykdommer.

Hjertet er plassert i brysthulen. Det er et sternum foran den. Orgelet forskyves litt til venstre i forhold til brystbenet. Den befinner seg på nivået av den sjette og åttende thoracale vertebrae.

Fra alle sider er hjertet omgitt av en spesiell serøs membran. Denne membranen kalles perikardiet. Den danner sitt eget hulrom kalt perikardial. Å være i dette hulrommet gjør det lettere for kroppen å glide mot andre vev og organer.

Fra radiologi-kriteriene synliggjøres følgende varianter av posisjonen til hjertemusklene:

  • Den vanligste - skråstilte.
  • Som om suspendert, med forskyvning av venstre kantlinje til midtlinjen - vertikal.
  • Spre på den underliggende membranen - horisontal.

Varianter av posisjonen til hjertemuskelen er avhengig av en persons morfologiske konstitusjon. I astenisk er den vertikal. I normostenic er hjertet skråt, og i hypersthenisk er det horisontalt.

Hjertemuskelen har en kegleform. Basen på orgelet er utvidet og trukket bakover og oppover. Hovedkarene passer til orgelbunnen. Hjertets struktur og funksjon - er uløselig forbundet.

Følgende overflater er isolert fra hjertemuskelen:

  • front vendt sternum;
  • bunnen, vendt mot membranen;
  • sideveis mot lungene.

Kardemuskulaturen visualiserer sporene, og reflekterer plasseringen av dens indre hulrom:

  • Coronoid sulcus. Den ligger ved bunnen av hjertemuskelen og ligger på grensen til ventriklene og atria.
  • Interventricular furrows. De løper langs den fremre og bakre overflaten av orgelet, langs grensen mellom ventrikkene.

Menneskelig hjerte muskel har fire kamre. Den tverrgående partisjonen deler den i to hulrom. Hvert hulrom er delt inn i to kamre.

Ett kammer er atrielt, og det andre er ventrikulært. Venøs blod sirkulerer i venstre side av hjertemuskelen, og arterielt blod sirkulerer i høyre side.

Det høyre atriumet er et muskelhulrom der øvre og nedre vena cava åpner. I øvre del av atria er det et fremspring - et øye. Atriumets indre vegger er glatte, med unntak av fremspring overflaten. I det transversale septumområdet, som adskiller atriumhulen fra ventrikkelen, er det en oval fossa. Det er helt lukket. I prenatalperioden ble et vindu åpnet på sin plass, gjennom hvilket venøs og arterielt blod ble blandet. I den nedre delen av høyre atrium er det en atrioventrikulær åpning gjennom hvilken venøst ​​blod passerer fra høyre atrium til høyre ventrikel.

Blodet går inn i høyre ventrikel fra høyre atrium ved tidspunktet for sammentrekning og avspenning av ventrikkelen. På tidspunktet for sammentrekningen av venstre ventrikkel, skyves blod inn i lungekroppen.

Den atrioventrikulære åpningen er blokkert av ventilen med samme navn. Denne ventilen har også et annet navn - tricuspid. Ventilens tre ventiler er bretter på den indre overflaten av ventrikkelen. Spesielle muskler er festet til ventilene, som forhindrer dem i å forvandle seg til atriell kavitet på tidspunktet for ventrikulær sammentrekning. På den indre overflaten av ventrikkelen er et stort antall tverrgående muskelskinner.

Hullet i lungekroppen er blokkert av en spesiell semilunarventil. Når den lukkes, forhindrer den tilbakestrømning av blod fra lungerommet når ventriklene slapper av.

Blodet i venstre atrium går inn i de fire lungeårene. Den har en bulge-eyelet. Klemmusklene er godt utviklet i øret. Blodet fra venstre atrium går inn i venstre ventrikel gjennom venstre atrial ventrikulær åpning.

Venstre ventrikkel har tykkere vegger enn høyre. På den indre overflaten av ventrikken er velutviklede muskelkors og to papillære muskler tydelig synlige. Disse musklene med elastiske senetråder er festet til dobbeltbladet venstre atrioventrikulær ventil. De forhindrer inversjonen av ventilbladene inn i hulrommet til venstreatrium ved tidspunktet for sammentrekningen av venstre ventrikel.

Aorta stammer fra venstre ventrikel. Aorta er dekket av en tricuspid semilunarventil. Ventiler hindrer retur av blod fra aorta inn i venstre ventrikel på tidspunktet for avslapping.

I forhold til andre organer er hjertet i en bestemt posisjon ved hjelp av følgende fiksasjonsformasjoner:

  • store blodkar;
  • ringformede fibrøse vevsaggregasjoner;
  • fibrøse trekanter.

Hjertemuskelens vegg består av tre lag: det indre, midtre og ytre:

  1. 1. Det indre laget (endokardiet) består av en bindevevplate og dekker hele indre overflate av hjertet. Tendon muskler og filamenter festet til endokardiet, danner hjerteventiler. Under endokardiet er en ekstra kjellermembran.
  2. 2. Mellomlaget (myokard) består av striated muskelfibre. Hver muskel fiber er en klynge av celler - kardiomyocytter. Visuelt, mellom fibrene er synlige mørke striper, som er innsatser som spiller en viktig rolle i overføringen av elektrisk eksitasjon mellom kardiomyocytter. Utenfor er muskelfibrene omgitt av bindevev, som inneholder nerver og blodkar som gir trofisk funksjon.
  3. 3. Det ytre laget (epikardium) er et serøst blad tett fusjonert med myokardiet.

I hjertemuskelen er et spesielt organlednings system. Det deltar i direkte regulering av rytmiske sammentrekninger av muskelfibre og intercellulær koordinering. Celler i hjerte muskel-systemet, myocytter, har en spesiell struktur og rik innervering.

Hjertets ledende system består av en klynge av noder og bunter, organisert på en spesiell måte. Dette systemet er lokalisert under endokardiet. I høyre atrium er en sinus node, som er den viktigste generatoren av hjerteoppblåsthet.

Den interatrielle bunten, som er involvert i samtidig atriell sammentrekning, avviker fra denne noden. Dessuten strekker tre bunter av ledende fibre til den atrioventrikulære knutepunktet som befinner seg i regionen av koronarsulcus, seg fra sinus-atrialenoden. Store grener av det ledende systemet brytes opp i mindre og deretter til de minste, og danner et enkelt ledende nettverk av hjertet.

Dette systemet sikrer samtidig myokardiums arbeid og koordinert arbeid av alle avdelinger i kroppen.

Perikardiet er et skall som danner et hjerte rundt hjertet. Denne membranen adskiller på en pålitelig måte hjertemuskelen fra andre organer. Perikardiet består av to lag. Tett fibrøs og tynn serøs.

Det serøse laget består av to ark. Mellom arkene dannes et rom fylt med serøs væske. Denne situasjonen gjør det mulig for hjerte muskelen å glide komfortabelt under sammentrekningene.

Automatisme er den viktigste funksjonelle kvaliteten på hjertemusklene for å krympe under påvirkning av impulser som genereres i seg selv. Automatikken av hjerteceller er direkte relatert til egenskapene til kardiomyocytmembranen. Cellemembranen er semipermeabel for natrium- og kaliumioner, som danner et elektrisk potensial på overflaten. Den raske bevegelsen av ioner skaper forholdene for å øke hjertemuskelen. Når den elektrokemiske balansen er nådd, er hjertemuskelen ikke uventelig.

Myokardets energiforsyning oppstår på grunn av dannelsen i muskelfibers mitokondrier av energisubstrater ATP og ADP. For full operasjon av myokardiet er det nødvendig med en tilstrekkelig blodtilførsel, som er tilveiebrakt av koronararteriene som strekker seg fra aortabuen. Aktiviteten til hjertemuskelen er direkte relatert til arbeidet i sentralnervesystemet og systemet med hjertereflekser. Reflekser spiller en regulatorisk rolle, som sørger for optimal hjertefunksjon under stadig skiftende forhold.

Funksjoner av nerve regulering:

  • adaptiv og utløsende effekt på arbeidet i hjertemuskelen;
  • balansere metabolske prosesser i hjertemuskelen;
  • humoristisk regulering av organaktivitet.

Hjertets funksjoner er som følger:

  • Kan utøve press på blodstrøm og oksygenorganer og vev.
  • Det kan fjerne fra kroppen karbondioksid og avfallsprodukter.
  • Hver kardiomyocyt er i stand til å bli begeistret av impulser.
  • Hjertemusklen er i stand til å utføre impulsen mellom kardiomyocytter gjennom et spesielt ledningssystem.
  • Etter arousal kan hjertemuskelen trekke seg sammen med atriene eller ventrikkene, som pumper blod.

Hjertet er en av de mest perfekte organene i menneskekroppen. Den har et sett med fantastiske egenskaper: kraft, utrettelighet og evne til å tilpasse seg de stadig skiftende miljøforholdene. Takket være hjertearbeidet, kommer oksygen og næringsstoffer inn i alle vev og organer. At det gir kontinuerlig blodgass i hele kroppen. Menneskekroppen er et komplekst og koordinert system, hvor hjertet er den viktigste drivkraften.

Egenskaper av hjertemuskelen og dens sykdommer

Hjertemusklen (myokard) i strukturen av det menneskelige hjerte ligger i mellomlaget mellom endokardiet og epikardiet. Det er dette som sikrer uavbrutt arbeid på "destillasjon" av oksygenert blod i alle organer og systemer i kroppen.

Enhver svakhet påvirker blodstrømmen, krever en kompenserende justering, harmonisk funksjon av blodforsyningssystemet. Utilstrekkelig tilpasningsevne forårsaker en kritisk reduksjon i effektiviteten av hjertemuskelen og dens sykdom.
Utholdenhet av myokardiet er gitt av dets anatomiske struktur og utstyrt med evner.

Strukturelle egenskaper

Det er akseptert av størrelsen på hjertevegget for å bedømme utviklingen av det muskulære laget, fordi epikardiet og endokardiet er normalt meget tynne skall. Et barn er født med samme tykkelse på høyre og venstre ventrikel (ca. 5 mm). Ved ungdomsår øker venstre ventrikkel med 10 mm, og den høyre med bare 1 mm.

I en voksen sunn person i avslapningsfasen varierer tykkelsen på venstre ventrikkel fra 11 til 15 mm, den høyre - 5-6 mm.

Egenskapen av muskelvev er:

  • strikket striasjon dannet av myofibriller av kardiomyocytceller;
  • Tilstedeværelsen av fibre av to typer: tynn (aktinisk) og tykk (myosin), forbundet med tverrgående broer;
  • sammensatte myofibriller i bunter av forskjellige lengder og retning, som lar deg velge tre lag (overflate, indre og middels).

Morfologiske egenskaper av strukturen gir en kompleks mekanisme for sammentrekning av hjertet.

Hvordan inngår hjertet?

Kontraktilitet er en av egenskapene til myokardiet, som består i å skape rytmiske bevegelser av atria og ventrikler, slik at blod kan pumpes inn i karene. Hjertets kamre går kontinuerlig gjennom to faser:

  • Systole - forårsaket av kombinasjonen av actin og myosin under påvirkning av ATP-energi og frigjøring av kaliumioner fra celler, mens tynne fibre glir langs tykk og bjelker faller i lengde. Bevist muligheten for bølgelignende bevegelser.
  • Diastole - det er en avslapning og adskillelse av aktin og myosin, restaurering av utført energi på grunn av syntese av enzymer, hormoner, vitaminer oppnådd av "broene".

Det har blitt fastslått at kraften av sammentrekning er gitt av kalsiumet inne i myocytter.

Hele syklusen av sammentrekning av hjertet, inkludert systole, diastol og en generell pause bak dem, med en normal rytme som passer inn i 0,8 sek. Det begynner med atriell systole, blodet er fylt med ventrikler. Da renner atriene "hviler", beveger seg inn i diastolfasen, og ventrikelkontrakten (systole).
Å telle tiden for "arbeid" og "hvile" av hjertemuskelen viste at tilstanden av sammentrekning utgjør 9 timer og 24 minutter per dag, og for avslapning - 14 timer og 36 minutter.

Sekvensen av sammentrekninger, tilveiebringelse av fysiologiske egenskaper og kroppens behov under trening, forstyrrelser avhenger av sammenkoblingen av myokardiet med de nervøse og endokrine systemer, evnen til å motta og "dekode" signaler for aktivt å tilpasse seg de menneskelige levekårene.

Hjertemekanismer for å redusere

Egenskapene til hjertemuskelen har følgende mål:

  • støtte myofibrill sammentrekning
  • gi den rette rytmen for optimal fylling av hulrommene i hjertet;
  • for å bevare muligheten for å skyve blodet i noen ekstreme forhold for organismen.

For dette har myokardiet følgende evner.

Spenning - myocytes evne til å reagere på innkommende patogener. Fra over-terskel stimuleringer, beskytter cellene seg med en tilstand av refraktoritet (tap av opphissingsevne). I den normale sammentrekningssyklusen skiller mellom absolutt refraktoritet og relativitet.

  • I perioden med absolutt refraktoritet, fra 200 til 300 ms, reagerer myokardiet ikke til superstrong stimuli.
  • Når det er relativ kun å reagere på sterke nok signaler.

Ledningsevne - egenskapen til å motta og overføre impulser til ulike deler av hjertet. Det gir en spesiell type myocytter med prosesser som ligner hjernens nevroner.

Automatisme - evnen til å skape inne i myokardets eget handlingspotensial og forårsake sammentrekninger, selv i form isolert fra organismen. Denne egenskapen tillater gjenoppliving i nødstilfeller, for å opprettholde blodtilførselen til hjernen. Verdien av det lokaliserte nettverket av celler, deres klynger i noder under donorhjertetransplantasjonen, er stor.

Verdien av biokjemiske prosesser i myokardiet

Livskraften av kardiomyocytter er gitt av tilførsel av næringsstoffer, oksygen og energisyntese i form av adenosintrifosfat.

Alle biokjemiske reaksjoner går så langt som mulig under systole. Prosessene kalles aerob, fordi de bare er mulig med tilstrekkelig mengde oksygen. Per minutt forbruker venstre ventrikel for hver 100 g av massen 2 ml oksygen.

For energiproduksjon brukes blod levert:

  • glukose,
  • melkesyre
  • ketonlegemer,
  • fettsyrer
  • pyruviske og aminosyrer
  • enzymer,
  • B-vitaminer,
  • hormoner.

I tilfelle økt hjertefrekvens (fysisk aktivitet, spenning) øker oksygenbehovet med 40-50 ganger, og forbruket av biokjemiske komponenter øker også betydelig.

Hvilke kompensasjonsmekanismer har hjertemuskelen?

Hos mennesker forekommer patologi ikke så lenge kompensasjonsmekanismer fungerer bra. Det neuroendokrine systemet er involvert i regulering.

Den sympatiske nerven gir signaler til myokardiet om behovet for forbedrede sammentrekninger. Dette oppnås ved en mer intensiv metabolisme, økt ATP-syntese.

En lignende effekt oppstår med økt katekolaminsyntese (adrenalin, norepinefrin). I slike tilfeller krever det forbedrede arbeidet i myokardiet økt oksygentilførsel.

Vagusnerven bidrar til å redusere hyppigheten av sammentrekninger under søvn, i hvileperioden, for å opprettholde oksygenbutikker.

Det er viktig å ta hensyn til refleksmekanismer for tilpasning.

Takykardi er forårsaket av stagnerende strekk av munnen av hule vener.

Refleksbremsing av rytmen er mulig med aortastensose. Samtidig irriterer økt trykk i hulrommet i venstre ventrikkel slutten av vagusnerven, bidrar til bradykardi og hypotensjon.

Varigheten av diastol øker. Gunstige forhold er opprettet for hjertefunksjonen. Derfor anses aorta-stenose som en brønnkompensert defekt. Det tillater pasienter å leve i en avansert alder.

Hvordan behandle hypertrofi?

Vanligvis medfører langvarig økt belastning hypertrofi. Veggtykkelsen på venstre ventrikkel øker med mer enn 15 mm. I formasjonsmekanismen er det viktige punktet at kapillær spiring er dypt inn i muskelen. I et sunt hjerte er antall kapillærer per mm2 av hjertemuskelvev ca 4000, og i hypertrofi faller indeksen til 2400.

Derfor betraktes staten til et bestemt punkt som kompenserende, men med en betydelig fortykkelse av veggen fører til patologi. Vanligvis utvikler den seg i den delen av hjertet, som må jobbe hardt for å presse blod gjennom en innsnevret åpning eller for å overvinne forhindringen av blodårene.

Hypertrophied muskel kan opprettholde blodstrømmen for hjertefeil i lang tid.

Muskel i høyre ventrikel er mindre utviklet, det virker mot et trykk på 15-25 mm Hg. Art. Derfor er kompensasjon for mitral stenose, pulmonal hjerte ikke holdt lenge. Men høyre ventrikulær hypertrofi er av stor betydning ved akutt hjerteinfarkt, hjerteaneurisme i området i venstre ventrikel, lindrer overbelastning. Bevist betydelige egenskaper av de rette delene i trening under trening.

Kan hjertet tilpasse seg arbeidet i tilstander av hypoksi?

En viktig egenskap for tilpasning til arbeid uten tilstrekkelig oksygenforsyning er den anaerobe (oksygenfrie) prosessen med energisyntese. En svært sjelden forekomst for menneskelige organer. Den er kun inkludert i nødstilfeller. Tillater hjertemuskelen å fortsette sammentrekninger.
De negative konsekvensene er akkumulering av nedbrytningsprodukter og utmattelse av muskelfibriller. En hjertesyklus er ikke nok for energiens resyntese.

Imidlertid er en annen mekanisme involvert: Vevshypoksi fører refleksivt til at binyrene produserer mer aldosteron. Dette hormonet:

  • øker mengden sirkulerende blod;
  • stimulerer en økning i innholdet av røde blodlegemer og hemoglobin;
  • styrker venøs flyt til høyre atrium.

Så det lar deg tilpasse kroppen og myokardiet til mangel på oksygen.

Hvordan virker hjerteinfarkt, mekanismer for kliniske manifestasjoner

Myokardielle sykdommer utvikles under påvirkning av ulike årsaker, men forekommer bare når tilpasningsmekanismerene mislykkes.

Langsiktig tap av muskel energi, umuligheten av selvsyntese i fravær av komponenter (spesielt oksygen, vitaminer, glukose, aminosyrer) fører til et tynnslag av actomyosin, bryter forbindelsen mellom myofibriller, erstatter dem med fibrøst vev.

Denne sykdommen kalles dystrofi. Det følger med:

  • anemi,
  • beriberi,
  • endokrine lidelser
  • rus.

Oppstår som et resultat:

  • hypertensjon,
  • koronar aterosklerose,
  • myokarditt.

Pasienter opplever følgende symptomer:

  • svakhet
  • arytmi,
  • fysisk dyspné
  • hjertebank.

I ung alder kan tyrotoksikose, diabetes mellitus, være den vanligste årsaken. Samtidig er det ingen åpenbare symptomer på en forstørret skjoldbruskkjertel.

Den inflammatoriske prosessen i hjertemuskelen kalles myokarditt. Den følger både smittsomme sykdommer hos barn og voksne, og de som ikke er knyttet til infeksjon (allergisk, idiopatisk).

Utvikler i fokus og diffus form. Veksten av inflammatoriske elementer smitter myofibriller, avbryter stiene, endrer aktivitetene til noder og individuelle celler.

Som et resultat utvikler pasienten hjertesvikt (ofte høyre ventrikulær). Kliniske manifestasjoner består av:

  • smerte i hjertet;
  • rytmeavbrudd;
  • kortpustethet
  • dilatasjon og pulsering av nakkeårene.

Atrioventrikulær blokkering av varierende grad registreres på EKG.

Den mest kjente sykdommen forårsaket av nedsatt blodmengde til hjertemuskelen er myokardisk iskemi. Det flyter i form av:

  • angina angrep
  • akutt myokardinfarkt
  • kronisk kronisk insuffisiens,
  • plutselig død.

Alle former for iskemi er ledsaget av paroksysmal smerte. De kalles figurativt "gråtende sultende myokard." Kurset og utfallet av sykdommen avhenger av:

  • assistansehastighet;
  • gjenoppretting av blodsirkulasjon på grunn av collaterals;
  • muskelceller kan tilpasse seg hypoksi;
  • dannelse av et sterkt arr.

Hvordan hjelpe hjertemuskelen?

De mest forberedte for kritiske påvirkninger forblir folk som er involvert i sport. Det bør være tydelig utmerkede cardio, tilbys av treningssentre og terapeutiske øvelser. Ethvert hjerteprogram er designet for friske mennesker. Styrket fitness gjør at du kan forårsake moderat hypertrofi av venstre og høyre ventrikel. Med den rette jobben kontrollerer personen selv pulsets suverenitet.

Fysioterapi er vist for personer som lider av noen sykdommer. Hvis vi snakker om hjertet, har det som mål å:

  • forbedre vevregenerering etter et hjerteinfarkt;
  • styrke leddbåndene og eliminere muligheten for klemming av paravertebrale karene;
  • "Spur" immunitet;
  • gjenopprette nevro-endokrin regulering;
  • for å sikre arbeidet med hjelpeskip.

Behandling med rusmidler er foreskrevet i henhold til deres virkningsmekanisme.

For terapi er det nå et tilstrekkelig arsenal av verktøy:

  • lindring av arytmier;
  • forbedre metabolisme i kardiomyocytter;
  • økende ernæring på grunn av utvidelse av koronarfartøy;
  • øke motstanden mot hypoksi
  • overveldende fokus på spenning.

Det er umulig å joke med hjertet ditt, det anbefales ikke å eksperimentere med deg selv. Helbredende midler kan bare forskrives og velges av lege. For å forhindre patologiske symptomer så lenge som mulig, behøves riktig forebygging. Hver person kan hjelpe sitt hjerte ved å begrense inntaket av alkohol, fettstoffer, slutte å røyke. Regelmessig trening kan løse mange problemer.

Strukturen og prinsippet i hjertet

Hjertet er et muskelorgan i mennesker og dyr som pumper blod gjennom blodårene.

Hjertefunksjoner - hvorfor trenger vi et hjerte?

Vårt blod gir hele kroppen oksygen og næringsstoffer. I tillegg har den også en rensende funksjon som bidrar til å fjerne metabolisk avfall.

Hjertets funksjon er å pumpe blod gjennom blodårene.

Hvor mye blod gjør en persons hjertepumpe?

Menneskets hjerte pumper rundt 7.000 til 10.000 liter blod på en dag. Dette er om lag 3 millioner liter per år. Det viser seg opptil 200 millioner liter i livet!

Mengden pumpet blod i løpet av et minutt avhenger av den nåværende fysiske og følelsesmessige belastningen - jo større belastningen er, jo mer blod kroppen trenger. Så hjertet kan passere gjennom seg selv fra 5 til 30 liter på ett minutt.

Sirkulasjonssystemet består av om lag 65 000 fartøy, deres totale lengde er ca 100 tusen kilometer! Ja, vi er ikke forseglet.

Sirkulasjonssystemet

Sirkulasjonssystem (animasjon)

Det menneskelige kardiovaskulære systemet består av to sirkler av blodsirkulasjon. Med hvert hjerteslag beveger blodet i begge sirkler på en gang.

Sirkulasjonssystemet

  1. Deoksygenert blod fra overlegen og dårligere vena cava går inn i høyre atrium og deretter inn i høyre ventrikel.
  2. Fra høyre ventrikel presses blod inn i lungekroppen. Lungartariene trekker blod direkte inn i lungene (før lungekapillærene), hvor det mottar oksygen og frigjør karbondioksid.
  3. Etter å ha fått nok oksygen, går blodet tilbake til venstre atrium av hjertet gjennom lungene.

Great Circle of Blood Circulation

  1. Fra venstre atrium flytter blod til venstre ventrikel, hvorfra det pumpes videre gjennom aorta inn i systemisk sirkulasjon.
  2. Etter å ha passert en vanskelig sti, kommer blod gjennom de hule venene igjen i hjertetes høyre atrium.

Normalt er mengden blod som utkastes fra hjertets ventrikler med hver sammentrekning den samme. Dermed strømmer et like volum blod samtidig inn i de store og små sirkler.

Hva er forskjellen mellom årer og arterier?

  • Vene er konstruert for å transportere blod til hjertet, og arterienes oppgave er å levere blod i motsatt retning.
  • I blodårene er blodtrykket lavere enn i arteriene. I tråd med dette er arteriene av veggene preget av større elastisitet og tetthet.
  • Arterier mætter det "friske" vevet, og venene tar "sløsing" blodet.
  • Ved vaskulær skade kan arteriell eller venøs blødning skiller seg ut av blodets intensitet og farge. Arteriell - sterk, pulserende, slående "fontene", blodets farge er lys. Venøs blødning med konstant intensitet (kontinuerlig strømning), blodets farge er mørk.

Anatomisk struktur av hjertet

Vekten til en persons hjerte er bare 300 gram (i gjennomsnitt 250g for kvinner og 330g for menn). Til tross for den relativt lave vekten er dette utvilsomt hovedmusklen i menneskekroppen og grunnlaget for dens livsviktige aktivitet. Størrelsen på hjertet er faktisk omtrent like liknende av en person. Idrettsutøvere kan ha et hjerte som er en og en halv ganger større enn for en vanlig person.

Hjertet ligger i midten av brystet på nivået på 5-8 ryggvirvler.

Normalt ligger den nedre delen av hjertet hovedsakelig i venstre halvdel av brystet. Det er en variant av medfødt patologi der alle organer er speilet. Det kalles transponering av indre organer. Lungen, ved siden av hvilken hjertet ligger (normalt til venstre), har en mindre størrelse i forhold til den andre halvdelen.

Hjertens bakside ligger i nærheten av ryggsøylen, og fronten er forsvarlig beskyttet av brystbenet og ribbenene.

Menneskets hjerte består av fire uavhengige hulrom (kamre) delt med partisjoner:

  • to øvre - venstre og høyre atria;
  • og to nedre venstre og høyre ventrikler.

Høyre side av hjertet inkluderer høyre atrium og ventrikel. Den venstre halvdelen av hjertet er representert av henholdsvis venstre ventrikel og atrium.

Den nedre og øvre hule vener går inn i høyre atrium, og lungene vender inn i venstre atrium. Den pulmonale arteriene (også kalt pulmonal stammen) utgang fra høyre ventrikel. Fra venstre ventrikel stiger den stigende aorta.

Hjerteveggstruktur

Hjerteveggstruktur

Hjertet har beskyttelse mot overbelastning og andre organer, som kalles perikardiet eller perikardialposen (en slags konvolutt hvor orgelet er vedlagt). Den har to lag: det ytre tette, faste bindevevet, kalt fibrøs membran av perikardiet og det indre (perikardial serous).

Dette følges av et tykt muskellag - myokard og endokardium (tynt bindevev indre membran i hjertet).

Således består selve hjertet av tre lag: epikardiet, myokardiet, endokardiet. Det er sammentrekningen av myokardiet som pumper blod gjennom kroppens kar.

Veggene til venstre ventrikkel er omtrent tre ganger større enn veggene til høyre! Dette faktum forklares av det faktum at funksjonen til venstre ventrikel består i å skyve blod inn i den systemiske sirkulasjonen, hvor reaksjonen og trykket er mye høyere enn i de små.

Hjerteventiler

Hjerteventil enhet

Spesielle hjerteventiler lar deg kontinuerlig opprettholde blodstrømmen i riktig retning (ensrettet retning). Ventilene åpner og lukker en etter en, enten ved å la blod inn eller ved å blokkere banen. Interessant er alle fire ventiler plassert i samme plan.

En tricuspid ventil er plassert mellom høyre atrium og høyre ventrikel. Den inneholder tre spesielle plate-sash, stand i løpet av sammentrekning av høyre ventrikel for å gi beskyttelse mot motstrømmen av blod i atriumet.

Tilsvarende fungerer mitralventilen, bare den er plassert i venstre side av hjertet og er bicuspid i sin struktur.

Aortaklappen forhindrer utstrømning av blod fra aorta inn i venstre ventrikel. Interessant, når venstre ventrikel kontrakterer, åpnes aortaklappen som følge av blodtrykk på den, så det beveger seg inn i aorta. Da, under diastolen (hjertens avslappingsperiode), bidrar den omvendte strømmen av blod fra arterien til lukking av ventiler.

Normalt har aortaklaffen tre folder. Den vanligste medfødte anomali i hjertet er bicuspid aortaklappen. Denne patologien forekommer hos 2% av befolkningen.

En pulmonal (lungeventil) ventil på tidspunktet for sammentrekning av høyre ventrikel tillater blod å strømme inn i lungekroppen, og under diastolen tillater det ikke å strømme i motsatt retning. Består også av tre vinger.

Hjerteskader og kransløpssirkulasjon

Det menneskelige hjerte trenger mat og oksygen, så vel som andre organer. Fartøy som gir (nærende) hjertet med blod kalles koronar eller koronar. Disse fartøyene avgrener seg fra basen av aorta.

Kranspulsårene forsyner hjertet med blod, koronarårene fjerner deoksygenerte blod. De arteriene som er på overflaten av hjertet kalles epikardial. Subendokardial kalles koronararterier skjult dypt i myokardiet.

Det meste av utløpet av blod fra myokardiet skjer gjennom tre hjerteår: stort, middels og lite. Danner den koronare sinus, de faller inn i høyre atrium. De fremre og mindre årene i hjertet leverer blod direkte til høyre atrium.

Koronararterier er delt inn i to typer - høyre og venstre. Sistnevnte består av de fremre intervensjonene og konvoluttarteriene. En stor hjerteår forgrener seg til hjerteens bakre, midtre og små blodårer.

Selv helt friske mennesker har sine egne unike egenskaper ved kransløpssirkulasjonen. I virkeligheten kan fartøyene se og plasseres annerledes enn vist på bildet.

Hvordan utvikler hjertet (form)?

For dannelsen av alle kroppssystemer krever fosteret sin egen blodsirkulasjon. Derfor er hjertet det første funksjonelle organet som oppstår i kroppen av et humant embryo, det forekommer omtrent i den tredje uken av fosterutvikling.

Fosteret i begynnelsen er bare en klynge av celler. Men i løpet av graviditeten blir de stadig mer, og nå er de forbundet, danner i programmerte former. Først dannes to rør, som deretter smelter sammen i en. Denne røret er foldet og rushing danner en sløyfe - den primære hjerteløkken. Denne sløyfen er foran alle de gjenværende cellene i vekst og blir raskt utvidet, så ligger til høyre (kanskje til venstre, hvilket betyr at hjertet vil være plassert speilaktig) i form av en ring.

Så, vanligvis den 22. dagen etter unnfangelsen, oppstår den første sammentrekningen av hjertet, og på den 26. dagen har fosteret sin egen blodsirkulasjon. Videreutvikling involverer forekomsten av septa, dannelsen av ventiler og remodeling av hjertekamrene. Avdelingsform ved femte uke, og hjerteventiler dannes av niende uke.

Interessant begynner hjertet av fosteret å slå med hyppigheten av en vanlig voksen - 75-80 kutt per minutt. Da, ved begynnelsen av den syvende uken, er pulsen ca. 165-185 slag per minutt, som er maksimalverdien, etterfulgt av en avmatning. Den nyfødte puls er i området 120-170 kutt per minutt.

Fysiologi - prinsippet om det menneskelige hjerte

Se nærmere på hjertets prinsipper og mønstre.

Hjerte syklus

Når en voksen er rolig, samler hjertet sitt rundt 70-80 sykluser per minutt. En takt av pulsen er lik en hjertesyklus. Med en slik reduksjonshastighet tar en syklus ca 0,8 sekunder. Av hvilken tid er atriell sammentrekning 0,1 sekunder, ventrikler - 0,3 sekunder og avslapningsperiode - 0,4 sekunder.

Frekvensen av syklusen er satt av hjertefrekvensdriveren (en del av hjertemusklen der impulser oppstår som regulerer hjertefrekvensen).

Følgende konsepter skiller seg ut:

  • Systole (sammentrekning) - nesten alltid, dette konseptet innebærer en sammentrekning av hjertets ventrikler, noe som fører til blodspjeld langs arteriekanalen og maksimering av trykk i arteriene.
  • Diastole (pause) - perioden når hjertemuskelen er i avslapningsfasen. På dette punktet er hjertets kamre fylt med blod og trykket i arteriene reduseres.

Så måle blodtrykk alltid registrere to indikatorer. Som et eksempel, ta tallene 110/70, hva mener de?

  • 110 er øvre tallet (systolisk trykk), det vil si blodtrykket i arteriene ved hjerteslag.
  • 70 er det nedre tallet (diastolisk trykk), det vil si blodtrykket i arteriene ved hjerteoppblomstring.

En enkel beskrivelse av hjertesyklusen:

Hjerte syklus (animasjon)

På hjertet av avslapping, er atriene og ventriklene (gjennom åpne ventiler) fylt med blod.

  • Oppstår systole (sammentrekning) av atriene, som lar deg helt flytte blodet fra atria til ventriklene. Atriell sammentrekning begynner på stedet for tilstrømning av venene inn i den, noe som garanterer den primære komprimering av munnen og blodets manglende evne til å strømme tilbake i venene.
  • Atriene slapper av, og ventilene som adskiller atriene fra ventriklene (tricuspid og mitral) lukkes. Oppstår ventrikulær systole.
  • Ventricular systole skyver blod inn i aorta gjennom venstre ventrikel og inn i lungearterien gjennom høyre ventrikel.
  • Deretter kommer en pause (diastole). Syklusen gjentas.
  • For en pulsslag er det to hjerteslag (to systoler) - først blir atria redusert, og deretter ventriklene. I tillegg til ventrikulær systole er det atriell systole. Sammentrekningen av atriene har ikke verdi i det målte arbeidet i hjertet, siden i dette tilfellet er avslappetiden (diastol) nok til å fylle ventriklene med blod. Men når hjertet begynner å slå oftere, blir atriell systole avgjørende - uten at ventriklene ganske enkelt ikke ville ha tid til å fylle med blod.

    Blodtrykket gjennom arteriene utføres bare med sammentrekning av ventriklene, disse pushes-kontraktions kalles pulser.

    Hjerte muskel

    Den unike egenskapen til hjertemusklen ligger i sin evne til rytmiske automatiske sammentrekninger, vekslende med avslapping, som foregår kontinuerlig gjennom livet. Myokardiet (midtmuskulaturlaget i hjertet) av atria og ventrikler er delt, noe som gjør at de kan trekke seg separat fra hverandre.

    Kardiomyocytter - Muskelceller i hjertet med en spesiell struktur som tillater spesielt koordinert å overføre en bølge av excitasjon. Så det er to typer kardiomyocytter:

    • Vanlige arbeidstakere (99% av det totale antall hjertemuskelceller) er utformet for å motta et signal fra en pacemaker ved hjelp av kardiomyocytter.
    • spesiell ledende (1% av det totale antall hjerte muskelceller) kardiomyocytter danner ledningssystemet. I sin funksjon ligner de nevroner.

    Som skjelettmuskulaturen kan hjertets muskel øke i volum og øke effektiviteten i arbeidet. Hjertevolumet av utholdenhetsutøvere kan være 40% større enn det for en vanlig person! Dette er en nyttig hypertrofi av hjertet, når den strekker seg og er i stand til å pumpe mer blod i ett slag. Det er en annen hypertrofi - kalt "sportshjertet" eller "hjertehjertet".

    Bunnlinjen er at noen idrettsutøvere øker muskelmassen, og ikke dens evne til å strekke seg og skyve gjennom store mengder blod. Årsaken til dette er uansvarlig utarbeidet treningsprogram. Helt fysisk trening, spesielt styrke, bør bygges på grunnlag av kardio. Ellers forårsaker overdreven fysisk anstrengelse på uforberedt hjerte myokarddystrofi, noe som fører til tidlig død.

    Kardial ledningssystem

    Hjertets ledende system er en gruppe spesielle formasjoner bestående av ikke-standardiserte muskelfibre (ledende kardiomyocytter), som tjener som en mekanisme for å sikre hjertesystemets harmoniske arbeid.

    Impulsbane

    Dette systemet sikrer hjerteautomatikken - eksitering av impulser født i kardiomyocytter uten ekstern stimulans. I et sunt hjerte er den viktigste kilden til impulser sinusnoden (sinusnoden). Han leder og overlapper impulser fra alle andre pacemakere. Men hvis noen sykdom oppstår som fører til syndromets svakhet i sinusknudepunktet, overtar andre deler av hjertet sin funksjon. Så atrioventrikulærknutepunktet (automatisk senter for den andre rekkefølge) og bunten av Hans (tredje ordens AC) kan aktiveres når sinuskoden er svak. Det er tilfeller der sekundære noder øker sin egen automatisme og under normal drift av sinusnoden.

    Bihulehodet er plassert i bakre bakveggen til høyre atrium i umiddelbar nærhet av munnen til den overlegne vena cava. Denne noden initierer pulser med en frekvens på ca. 80-100 ganger per minutt.

    Atrioventrikulær knutepunkt (AV) ligger i nedre del av høyre atrium i atrioventrikulær septum. Denne partisjonen forhindrer spredningen av impulser direkte inn i ventrikkene, omgå AV-noden. Hvis sinusknuten er svekket, vil den atrioventrikulær innta sin funksjon og begynner å sende pulser i hjertemuskelen med en frekvens på 40-60 slag per minutt.

    Så passerer den atrioventrikulære knuten inn i bunten av Hans (atrioventrikulærbunten er delt inn i to ben). Høyre bein rushes til høyre ventrikel. Venstrebenet er delt inn i to halvdeler.

    Situasjonen med venstre ben av hans bunt er ikke fullt ut forstått. Det antas at det venstre benet av de fremre grenfibrene henviser til den fremre og den sidevegg av den venstre ventrikkel, og den bakre gren leverer fibrene bakre vegg av venstre ventrikkel, og den nedre del av sideveggen.

    I tilfelle av sinus atrioventrikulær, og blokade, grenblokk stand til å frembringe pulser med en hastighet på 30-40 per minutt.

    Ledende system blir dypere ytterligere forgrening i mindre avdelinger passer oppsummert i Purkinje fibere som trenger inn i hele hjertemuskelen og de tjener som en overføringsmekanisme for ventrikulær muskel. Purkinje-fibre er i stand til å initiere pulser med en frekvens på 15-20 per minutt.

    Unntatt velutdannede idrettsutøvere kan ha en normal hjertefrekvens i hvilemodus til det laveste innspilt antall - bare 28 hjerterytme per minutt! Men for den gjennomsnittlige personen, selv om det fører til en veldig aktiv livsstil, kan pulsfrekvensen under 50 slag per minutt være et tegn på bradykardi. Hvis du har en så lav puls, bør du undersøkes av en kardiolog.

    Hjerte rytme

    Den nyfødte hjertefrekvens kan være omtrent 120 slag per minutt. Ved å vokse opp stabiliserer pulsene til en vanlig person i området fra 60 til 100 slag per minutt. Veltrente idrettsutøvere (vi snakker om mennesker med en godt trent hjerte-og respiratoriske systemer) har en puls på mellom 40 og 100 slag per minutt.

    Hjertets rytme styres av nervesystemet - den sympatiske styrker sammentringene, og den parasympatiske svekkes.

    Kardial aktivitet, til en viss grad, avhenger av innholdet av kalsium og kaliumioner i blodet. Andre biologisk aktive stoffer bidrar også til regulering av hjerterytme. Hjertet vårt kan begynne å slå oftere under påvirkning av endorfiner og hormoner som blir utsatt når du lytter til favorittmusikken eller kysset ditt.

    I tillegg kan det endokrine systemet ha en signifikant effekt på hjerterytmen - og på frekvensen av sammentrekninger og deres styrke. For eksempel forårsaker utslipp av adrenalin ved binyrene en økning i hjertefrekvensen. Det motsatte hormonet er acetylkolin.

    Hjertefarger

    En av de enkleste metodene for å diagnostisere hjertesykdom er å lytte til brystet med et stetofonendoskop (auskultasjon).

    I et sunt hjerte, når man utfører standard auskultasjon, blir det bare hørt to hjerte lyder - de kalles S1 og S2:

    • S1 - lyden sendes ut når lukkingen av atrioventrikulær (mitral og trikuspidal) ventiler under systole (sammentrekning) av ventriklene.
    • S2 - lyden som gjøres ved lukking av semilunar (aorta og lunge) ventiler under diastolen (avslapping) av ventrikkene.

    Hver lyd består av to komponenter, men for det menneskelige øre smelter de sammen i en på grunn av den svært små tiden mellom dem. Hvis under normale auskultasjonsforhold blir ytterligere toner hørbare, kan dette tyde på en sykdom i kardiovaskulærsystemet.

    Noen ganger kan ytterligere uregelmessige lyder bli hørt i hjertet, som kalles hjertelyder. Tilstedeværelsen av støy indikerer som regel hvilken som helst patologi i hjertet. For eksempel kan støy føre til at blodet kommer tilbake i motsatt retning (regurgitation) på grunn av feil bruk eller skade på en ventil. Støy er imidlertid ikke alltid et symptom på sykdommen. For å klargjøre årsakene til utseendet av ekstra lyder i hjertet, er å lage en ekkokardiografi (ultralyd i hjertet).

    Hjertesykdom

    Ikke overraskende vokser antallet kardiovaskulære sykdommer i verden. Hjertet er et komplekst organ som faktisk hviler (hvis det kan kalles hvile) bare i intervaller mellom hjerteslag. Enhver kompleks og stadig arbeidsmekanisme i seg selv krever den mest forsiktige holdningen og konstant forebygging.

    Tenk deg hva en stor byrde faller på hjertet, gitt vår livsstil og lav kvalitet rikelig med mat. Interessant er dødeligheten fra hjerte-og karsykdommer ganske høy i høyinntektsland.

    De enorme mengder mat som forbrukes av befolkningen i rike land og den endeløse jakten på penger, samt de tilknyttede stressene, ødelegger vårt hjerte. En annen grunn til spredning av kardiovaskulære sykdommer er hypodynamien - en katastrofalt lav fysisk aktivitet som ødelegger hele kroppen. Eller, tvert imot, uvitende fascinasjon med tung trening, ofte forekommer på bakgrunn av hjertesykdom, tilstedeværelsen av noe som folk ikke engang vet og klarer å dø rett på tidspunktet for "wellness" aktiviteter.

    Livsstil og hjertes helse

    De viktigste faktorene som øker risikoen for å utvikle kardiovaskulære sykdommer er:

    • Fedme.
    • Høyt blodtrykk.
    • Forhøyet blodkolesterol.
    • Hypodynami eller overdreven trening.
    • Rikelig mat av lav kvalitet.
    • Deprimert følelsesmessig tilstand og stress.

    Gjør lesingen av denne store artikkelen et vendepunkt i livet ditt - gi opp dårlige vaner og endre livsstilen din.